This Specialization is intended for students and professionals in computer science and data science seeking to develop advanced skills in probability and statistical modeling. Through three comprehensive courses, you will cover essential topics such as joint probability distributions, expectation, simulation techniques, exponential random graph models, and probabilistic graphical models. These courses will prepare you to analyze complex data structures, conduct hypothesis testing, and implement statistical methods in real-world scenarios. By the end of the Specialization, you will be equipped with the practical tools and theoretical knowledge needed to make informed decisions based on data analysis, enhancing your capabilities in both academic and industry settings. Additionally, you will gain hands-on experience with programming tools like R, which is widely used in the industry for statistical computing and graphics, making you a competitive candidate for roles that require data analysis, modeling, and interpretation skills in technology-driven environments.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Spezialisierung für Statistical Methods for Computer Science
Master Statistical Methods for Data Analysis. Gain advanced skills in probability, statistical modeling, and computational techniques for effective data analysis and decision-making.


Dozenten: Ian McCulloh
Bei enthalten
Empfohlene Erfahrung
Empfohlene Erfahrung
Was Sie lernen werden
Gain proficiency in advanced statistical techniques and probability models to analyze complex data sets across various applications in computing.
Develop practical skills in simulation methods, network analysis, and probabilistic graphical models for effective data-driven decision-making.
Master hypothesis testing, regression analysis, and network modeling to derive meaningful insights and drive innovation in statistical methods.
Überblick
Kompetenzen, die Sie erwerben
- Statistics
- Probability
- Combinatorics
- Bayesian Statistics
- Regression Analysis
- Bayesian Network
- Simulations
- Statistical Modeling
- Statistical Methods
- Markov Model
- Data Analysis
- Probability Distribution
- Network Analysis
- Statistical Hypothesis Testing
- Statistical Analysis
- Graph Theory
- Probability & Statistics
- Data Science
- Applied Mathematics
Werkzeuge, die Sie lernen werden
Was ist inbegriffen?

Zu Ihrem LinkedIn-Profil hinzufügen
Erweitern Sie Ihre Fachkenntnisse.
- Erlernen Sie gefragte Kompetenzen von Universitäten und Branchenexperten.
- Erlernen Sie ein Thema oder ein Tool mit echten Projekten.
- Entwickeln Sie ein fundiertes Verständnisse der Kernkonzepte.
- Erwerben Sie ein Karrierezertifikat von Johns Hopkins University.

Spezialisierung - 3 Kursreihen
Was Sie lernen werden
Master combinatorial techniques, including permutations, combinations, and multinomial coefficients, to solve counting and probability problems.
Apply probability axioms, construct Venn diagrams, and calculate sample space sizes to evaluate probabilities in various scenarios.
Utilize Bayes' formula, the multiplication rule, and conditional probability to assess event relationships and solve real-world problems.
Analyze discrete and continuous random variables using probability density functions, cumulative distribution functions, and expected values.
Kompetenzen, die Sie erwerben
Was Sie lernen werden
Learn to analyze relationships between random variables through joint probability distributions and independence concepts.
Understand how to calculate and interpret expected values, variances, and correlations for random variables.
Acquire essential skills in conducting statistical tests, including T-tests and confidence intervals, for data analysis.
Explore the principles of Markov chains and their applications in modeling systems with memoryless properties and calculating entropy.
Kompetenzen, die Sie erwerben
Was Sie lernen werden
Master techniques for simulating random variables, including the Inverse Transformation and Rejection Methods using R programming.
Analyze complex networks using Exponential Random Graph Models to model and interpret social structures and their dependencies.
Understand and apply probabilistic graphical models, including Bayesian networks, to reason about uncertainty and infer relationships in data.
Kompetenzen, die Sie erwerben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozenten


Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
The specialization is designed to be completed at your own pace, but on average, it is expected to take approximately 3 months to finish if you dedicate around 5 hours per week. However, as it is self-paced, you have the flexibility to adjust your learning schedule based on your availability and progress.
You are encouraged to take the courses in the recommended sequence to ensure a smoother learning experience, as each course builds on the knowledge and skills developed in the previous ones. However, you are not required to follow a specific order, and you can take the courses in the order that best suits your needs and prior knowledge.
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
Weitere Fragen
Finanzielle Unterstützung verfügbar,