This 3-course Specialization from Google Cloud and New York Institute of Finance (NYIF) is for finance professionals, including but not limited to hedge fund traders, analysts, day traders, those involved in investment management or portfolio management, and anyone interested in gaining greater knowledge of how to construct effective trading strategies using Machine Learning (ML) and Python. Alternatively, this program can be for Machine Learning professionals who seek to apply their craft to quantitative trading strategies. By the end of the Specialization, you'll understand how to use the capabilities of Google Cloud to develop and deploy serverless, scalable, deep learning, and reinforcement learning models to create trading strategies that can update and train themselves. As a challenge, you're invited to apply the concepts of Reinforcement Learning to use cases in Trading. This program is intended for those who have an understanding of the foundations of Machine Learning at an intermediate level. To successfully complete the exercises within the program, you should have advanced competency in Python programming and familiarity with pertinent libraries for Machine Learning, such as Scikit-Learn, StatsModels, and Pandas; a solid background in ML and statistics (including regression, classification, and basic statistical concepts) and basic knowledge of financial markets (equities, bonds, derivatives, market structure, and hedging). Experience with SQL is recommended.


Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.



Spezialisierung für Machine Learning for Trading
Start Your Career in Machine Learning for Trading. Learn the machine learning techniques used in quantitative trading.

Dozent: Jack Farmer
39.239 bereits angemeldet
Bei enthalten
(1,110 Bewertungen)
Empfohlene Erfahrung
(1,110 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Understand the structure and techniques used in machine learning, deep learning, and reinforcement learning (RL) strategies.
Describe the steps required to develop and test an ML-driven trading strategy.
Describe the methods used to optimize an ML-driven trading strategy.
Use Keras and Tensorflow to build machine learning models.
Überblick
Kompetenzen, die Sie erwerben
- Artificial Neural Networks
- Artificial Intelligence and Machine Learning (AI/ML)
- Applied Machine Learning
- Securities Trading
- Statistical Machine Learning
- Deep Learning
- Machine Learning Methods
- Machine Learning
- Data Pipelines
- Supervised Learning
- Technical Analysis
- Market Data
- Financial Trading
- Time Series Analysis and Forecasting
- Google Cloud Platform
- Reinforcement Learning
- Financial Market
- Portfolio Management
Werkzeuge, die Sie lernen werden
Was ist inbegriffen?

Zu Ihrem LinkedIn-Profil hinzufügen
Erweitern Sie Ihre Fachkenntnisse.
- Erlernen Sie gefragte Kompetenzen von Universitäten und Branchenexperten.
- Erlernen Sie ein Thema oder ein Tool mit echten Projekten.
- Entwickeln Sie ein fundiertes Verständnisse der Kernkonzepte.
- Erwerben Sie ein Karrierezertifikat von Google Cloud.

Spezialisierung - 3 Kursreihen
Was Sie lernen werden
Understand the fundamentals of trading, including the concepts of trend, returns, stop-loss, and volatility.
Define quantitative trading and the main types of quantitative trading strategies.
Understand the basic steps in exchange arbitrage, statistical arbitrage, and index arbitrage.
Understand the application of machine learning to financial use cases.
Kompetenzen, die Sie erwerben
Was Sie lernen werden
Design basic quantitative trading strategies
Use Keras and Tensorflow to build machine learning models
Build a pair trading strategy prediction model and back test it.
Build a momentum-based trading model and back test it.
Kompetenzen, die Sie erwerben
Was Sie lernen werden
Understand the structure and techniques used in reinforcement learning (RL) strategies.
Understand the benefits of using RL vs. other learning methods.
Describe the steps required to develop and test an RL trading strategy.
Describe the methods used to optimize an RL trading strategy.
Kompetenzen, die Sie erwerben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To be successful in this course, you should have a basic competency in Python programming and familiarity with the Scikit Learn, Statsmodels and Pandas library. You should have a background in statistics (expected values and standard deviation, Gaussian distributions, higher moments, probability, linear regressions) and foundational knowledge of financial markets (equities, bonds, derivatives, market structure, hedging).
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,